Übungszettel 7

Aufgabe 1: Vollständige Induktionen des Tages

Beweisen Sie mittels vollständiger Induktion:

- a) Für $n \in \mathbb{N}$ gilt: $4^n + 15n 1$ ist durch 9 teilbar.
- b) $n \cdot \sqrt{n} > n + \sqrt{n}$, für $n \ge 3$

Aufgabe 2: Gruppen

Gegeben sei $G = \{a, b, c\}$ und die Verknüpfung o gegeben durch folgende Verknüpfungstafel:

Zeigen Sie, dass (G, \circ) eine kommutative Gruppe ist. Gehen Sie die Gruppenaxiome durch und überprüfen Sie diese. Schreiben Sie dazu zuerst formal auf, was Sie zeigen sollen.

Tipp: lösen Sie b) als letztes.

- a) (G, \circ) ist abgeschlossen.
- b) (G, \circ) ist assoziativ.
- c) (G, \circ) hat ein neutrales Element. Welches?
- d) (G, \circ) hat zu jedem Element ein Inverses.
- e) (G, \circ) ist kommutativ.

Aufgabe 3: * Gruppenen

Sei (G, \circ) eine Gruppe mit neutralem Element e und sei ein festes $a \in G$ gegeben. Wir definieren eine neue Verknüpfung $x * y = x \circ a \circ y$. Zeigen Sie, dass auch (G, *) eine Gruppe ist. Benutzen Sie x^{*-1} , um das Inverse bezüglich (G, *) auszudrücken.

Aufgabe 4: Gruppenenen

Gegeben sei $G = \{0, 1, 2, \dots 6\}$. Seien $a, b \in G$, dann definieren wir zwei neue Operationen: $a \oplus b \coloneqq (a+b) \mod 7$ und $a \otimes b \coloneqq (a \cdot b) \mod 7$.

Zeigen Sie:

- a) (G, \oplus) ist eine Gruppe.
- b) Was ist das Inverse zu 2, 3 und 4 in (G, \oplus) ?
- c) (G^*, \otimes) ist eine Gruppe, mit $G^* = G \setminus \{0\}$.
- d) Was ist das Inverse zu 2, 3 und 4 in (G^*, \otimes) ?

Aufgabe 5: Gruppenenenen

Betrachten Sie die Kleinsche Vierergruppe K_4 und die Gruppe $C_2 \times C_2$.

- a) Geben Sie die Verknüpfungstafeln dieser beiden Gruppen an.
- b) Geben Sie einen Isomorphismus $K_4 \to C_2 \times C_2$ an, und argumentieren Sie anhand der Verknüpfungstafeln, dass es sich um einen Isomorphismus handelt.

Aufgabe 6: * Gruppenenenen

Seien G, H Gruppen, $f: G \to H$ Homomorphismus. Definiere den Kern von f durch $\ker(f) = \{g \in G | f(g) = e\}.$

- a) Zeigen Sie, dass ker(f) eine Untergruppe von G ist.
- b) Zeigen Sie, dass $ker(f) = \{e\}$ genau dann, wenn f injektiv ist.

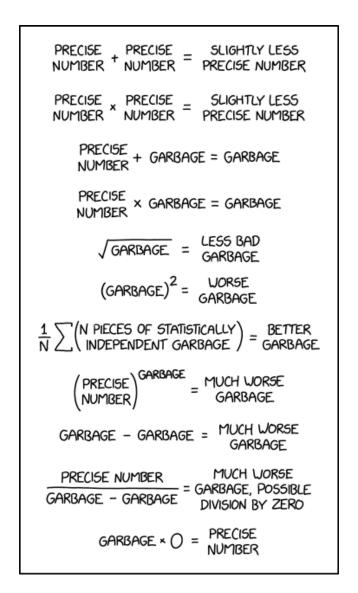


Abbildung 1: xkcd 2295: Garbage Math - xkcd.com/2295/